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s ABSTRACT: Model predictive control (MPC) is an optimization-based control framework for
» linear and nonlinear systems. MPC estimates control inputs by iterative optimization of a cost func-
» tion that minimizes deviations from a desired state while accounting for control costs over a finite
» prediction horizon. This process typically involves direct computations in state space through full
s model evaluations, making it computationally expensive for high-dimensional nonlinear systems.
« This study introduces ensemble model predictive control (EnMPC), a novel framework for nonlinear
s control that combines MPC and ensemble data assimilation. EnMPC directly solves the MPC cost
s function using ensemble smoother methods, including the four-dimensional ensemble variational
» assimilation method, ensemble Kalman smoother, and particle smoother. By assimilating pseudo-
s observations that incorporate information about reference trajectories and constraints, EnMPC
» mitigates nonlinearity and uncertainty in high-dimensional systems, outperforming conventional
» MPC in computational efficiency through ensemble approximations. In addition, EnMPC is able
2 to determine optimal weights for control inputs by using the analysis error covariance derived from
» ensemble data assimilation. We present two different approaches for defining control objectives.
= The penalty term approach applies penalties when model predictions violate pre-defined constraints
2 by assimilating constraint information as pseudo-observations. In contrast, the trajectory tracking
s approach assimilates pseudo-observations derived from a reference trajectory to lead the system
2 in the direction of the desired state. We perform numerical experiments with idealized models
2= that capture the chaotic nature of atmospheric systems to show that EnMPC efficiently controls the

» system and offers flexibility for a variety of control objectives.
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2 1. Introduction

»  The intensification of extreme weather events induced by global warming is causing significant
» damage to human life and property worldwide. As the IPCC sixth assessment report points
« out, rising temperatures increase the threat by increasing the frequency of heat waves, heavy
s rains and floods, and the intensity of hurricanes and typhoons (IPCC 2021). The demand for
«« new technological advances is growing as it becomes more difficult to manage the increasing
s number of extreme weather events with only infrastructure improvements. Since the mid-20th
» century, researchers have considered interventions such as cloud seeding, where they use silver
« 1odide to induce rainfall. However, while scientific studies have provided evidence to support the
« effectiveness of the approach to some extent (Langmuir 1948; Ryan and King 1997; Silverman
» 2001), its efficiency and optimization remain areas of active research.

©  Model predictive control (MPC) is a powerful control technique that uses dynamic models to
« predict future behavior and optimize control actions over a finite time horizon (Morari and Lee
2 1999; Rockett and Hathway 2017; Babu et al. 2019; Schwenzer et al. 2021). As computational
» power has advanced, the range of its applications has expanded, and new challenges, such as
« weather control, have become increasingly realistic. However, meteorological systems are highly
= complex, consisting of numerous interconnected elements such as the atmosphere, oceans, land,
» and biosphere (Lea et al. 2015; Sluka et al. 2016; Kurosawa et al. 2023). As its behavior exhibits
~ significant nonlinearities, small variations can have unpredictable effects on the entire system
» (Slingo and Palmer 2011), and the system responds slowly to interventions (Leith 1974), making
» accurate predictions and control difficult. Moreover, weather models often require significant
s computational resources due to their high dimensionality and the need for fine temporal and spatial
s resolutions. Given these characteristics of weather systems, proper handling of uncertainty and
= the heavy computational cost of calculating optimal control inputs are key challenges for achieving
s effective weather control.

= To properly handle uncertainty, data assimilation integrates observations and numerical models
ss to more accurately estimate the state of the system, and it is widely used in weather forecast-
» ing (Houtekamer and Mitchell 1998; Kalnay 2003; Leutbecher and Palmer 2008; Evensen 2009).
s> Miyoshi and Sun (2022) proposed a new experimental framework to systematically evaluate control

s approaches through ensemble prediction. In the framework, known as the control simulation exper-
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s 1iment (CSE), they used ensemble data assimilation for state estimation. Subsequently, Kawasaki
« and Kotsuki (2024) integrated a conventional MPC method and achieved efficient control with
« minimal input within the CSE framework. However, the computational cost of calculating optimal
« control inputs remains high, and there is a need to develop more efficient control methods.

e Sawada (2024a,b) proposed a weather control method that combines ensemble data assimilation
« and MPC, utilizing the ensemble Kalman filter (EnKF) and ensemble Kalman smoother (EnKS) to
s solve the MPC problem efficiently. Traditional MPC requires direct computations in state spaces
e and explicit calculation of system evolution within the prediction horizon, whereas ensemble
& approximations use statistical representations, enabling more efficient control of complex systems.
» The EnKF-based control method, which directly utilizes the existing EnKF architecture, offers
» flexibility for geoscience applications but still faces several challenges. First, when calculating
» the optimal control inputs, the system’s behavior within the evaluation horizon or window of the
» cost function is assumed to be approximately linear. In systems with strong nonlinearity, this
» approximation does not hold, and errors are likely to occur when calculating the optimal control
7 input (Zhang et al. 2009; Kurosawa and Poterjoy 2021). Second, as used in Sawada (2024a), many
7 control problems commonly add penalty terms to the cost function to handle constraint violations
7 in control objectives. In the penalty-based approaches, when control objectives are unclear or
» multiple objectives must be balanced, designing the cost function and setting penalties becomes
7 challenging, potentially reducing performance and causing unintended behavior.

»  To address these challenges, the current study extends the methodology of using ensemble data
» assimilation for solving MPC problems, building upon the insights of Sawada (2024a). Specifically,
o Wwe propose an ensemble model predictive control (EnMPC) framework that employs various
s ensemble data assimilation techniques, including 4D-ensemble-Var (4DEnVar), particle filter (PF),
= and particle smoother (PS). This approach expands the range of tools available for solving MPC
s problems in high-dimensional nonlinear systems. As part of this framework, the EnMPC includes
s« the method proposed by Sawada (2024a), which uses the EnKF and EnKS to solve MPC problem:s.
ss Furthermore, the EnMPC framework introduces not only the penalty-based approach but also a
s trajectory-tracking approach to achieve control, providing greater flexibility in addressing diverse
& control objectives. To demonstrate the effectiveness of the proposed EnMPC framework, we

s conduct a comparison with conventional MPC approaches.
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»  The manuscript is organized in the following manner. Section 2 provides a brief overview of
« ensemble data assimilation and MPC. We introduce EnMPC in Sec. 3, and Sec. 4 describes the
« experimental setup. Section 5 presents the experimental results, and the last section concludes the

« paper with a summary of the key findings, potential applications, and directions for future research.

« 2. MPC and data assimilation

«  This section provides a brief overview of MPC and ensemble data assimilation, which constitute
s the proposed EnMPC framework. We begin by presenting the MPC algorithm for dealing with
« control problems. Subsequently, we outline ensemble data assimilation, focusing on 4DEnVar,
« EnKF, and PF. This section explains MPC and data assimilation individually, while Sec. 3

« highlights their similarities, differences, and how they are combined to form EnMPC.

w da. MPC

w  MPC is a control strategy that optimizes control inputs by using a dynamic model to predict the
o future behavior of the system. MPC solves an optimization problem at each time step to minimize
w2 a cost function over a finite predictive horizon. The specific design of the cost function depends

ws on the application, but the general formulation can be expressed as:

Tc TP
J(up,uy,... ,UTL.) = Zu:Cu_lut+Z(rt —Hc(xt))-rcr_l (r;—H(x)).
t=0 t=0

D

Ji input Jstate

st X1 = Mi(xp,up).

w Here, X; denotes the state variable at time 7. The next state x;.; is obtained by integrating the
s nonlinear forecast model operator M, forward from the current state X, and the control input u,.
ws The control input cost Jippy is typically optimized over a shorter control horizon 7, within the
w7 prediction horizon T),. Jinpye penalizes the magnitude of the control input, preventing it from being
s excessively large. The state deviation cost Jyaee evaluates the difference between model-predicted
e States and the control objective r, and the optimization problem is performed over a finite prediction

o horizon T,. H€ is an operator that maps the state variables x to the control variables. C* and
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m CT are weighting matrices for the control input u and the deviations between state variables and
w2 control objective, respectively.

13 Among the two components of the cost function in (1), the state deviation cost Jg . typically has
s the highest computational cost. This is because it involves predicting and evaluating the future states
ws of the system over the entire prediction horizon, which requires extensive computations, especially
ws for complex or nonlinear systems. The ensemble approximation can mitigate this computational

w  cost by using representative trajectories to approximate future states, as discussed in Sec. 3.

ws b, The four-dimensional variational method (4DVar) and 4DEnVar

w  The 4DVar method estimates the optimal initial state X over a time window by considering the
= misfits between observations and forecast model states at multiple times. This process is achieved

2 by minimizing the following cost function (Talagrand 2014; Bannister 2017):

500 = (0-x8) B (o) + D (3, Hx) TR (v~ HOx,)
t=0

2

Ji back
ground
Jobservation

st Xpe1 = M;(X;)

= The firsttermin (2) qualifies the difference between the initial guess (background or prior) Xg and the
s estimated state xg, weighted by the background error covariance matrix B. The second term in (2)
=« measures the misfit between the state variables and the observations y at times ¢ =0, 1,2, ...,7. The
s Observation operator H maps the state x to the observation space, and R represents the observation
s error covariance matrix. The time window 7 is referred to as the data assimilation window and
w2 plays the same role as the prediction horizon T}, in MPC. Therefore, the second term Jgpservation i
= (2) serves a similar purpose to the state deviation cost Jgaee in the MPC cost function (1), as both
1 evaluate the discrepancies between the predicted states and the target values or observations over
w a specific time horizon.

w  Operational systems often implement 4DVar using an incremental approach to utilize the lin-

w earized model instead of the full nonlinear model (Courtier et al. 1994). Defining dxg = X¢ — X(b) ,
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s the cost function J(Xg) in (2) as becomes:

J(6%0) = 6x] B~ 6%0+ Z(det —d,) "R (Hsx, - d,),
" =0
Jbackgmund (3)

J, observation

S.t. 6X[+1 = Mt(5Xt)

w  where M, and H are the tangent linear operators of M; and H, respectively. The innovation vector
ws d;is definedasd, =y, — H[M,(Xg)].

w  The convergence rate of the optimization problem depends on the condition number of the
w  Hessian matrix (Zupanski 1996). In operational data assimilation systems using atmospheric
= models, the dimension of the state vector is typically on the order of O(10'°) or greater. This
w results in a background error covariance matrix B that is too large to be explicitly represented or
w0 handle directly. To address this computational challenge, operational systems commonly employ

w  the following approach (Buehner 2005; Wang et al. 2010; Zhu et al. 2022):

0xg = Uy,
“)
Hox, =U)v,
« Here, U is a square root of the background error covariance matrix (B = U*U*"; Lorenc 2003),
w and v is the new control variable in the reduced-dimension space. The initial perturbation §xo and
w the observation perturbation Hox, are projected onto a subspace spanned by ensemble members
s using the transformation matrices U* and U, respectively. The perturbation matrices U and U”

s are defined as follows:

U= == |sx(D), §x@, ..., gx(Ne)

®)

U= L5y, sy@, ..., gsyWel,

« where N, is the ensemble size, 6x'¥) and §y¥) are the k-th ensemble perturbations for the model
us state and observation space, respectively. Perturbations in observation space are calculated using

w the tangent linear observation operator, where y = Hox. By adopting this transformation, the cost
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150 function is reformulated as:

.
JW)= Vv 4 (Uv-d) TR (Uv-d,).
-~ 5 (6)

Ji background

Jobservation

» Tominimize (6), v must satisfy the condition (0J/dv) " =0. Asaresult, this approach eliminates the
s need for an adjoint model, as all calculations occur within the subspace spanned by the ensemble
s samples. This incremental 4DEnVar approach combines with ensemble-based transformations
w thus balances computational efficiency and the practical constraints of high-dimensional data
s assimilation systems. For further details on these methods, we encourage readers to review the
s mathematical descriptions in Liu et al. (2009), Fairbairn et al. (2014), Poterjoy and Zhang (2015),
i and Kurosawa and Poterjoy (2021).

s C. EnKF and EnKS

s In this study, the control method based on the EnKF adopts the framework proposed in Sawada

w (2024a). The EnKF minimizes the following cost function to obtain the analysis state:

J(x0) = (%0 =x2)TP" ™ (x0—XB) +(yo — H(x0)) TR (yo — H(x0)).. (7)

Ji background Jobservation

w Here, x? is the ensemble mean of the background state variables and P” represents the background
we error covariance matrix. As in 4DVar, MPC and EnKF consider similar cost components, taking
e  into account the background information and discrepancies in their respective frameworks.

w  The EnKF efficiently reduces the computational cost by representing the error covariance matrix
s PP statistically using ensemble members as follows (Evensen 1994; Whitaker and Hamill 2002;

w Houtekamer and Zhang 2016):

P’ = EET, ®)

E= ﬁ[ax“l...,ax“@], 9)
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w where E is the matrix of ensemble members, with each column representing the perturbation
w from the forecast state. Thus, analytically solving the cost function in (7) yields the update of
w the ensemble mean. Unlike the variational methods discussed in Sec.2.b, which require iterative
o numerical optimization to minimize their respective cost functions, EnKF does not require such
w  iterations.

= Regarding the update of ensemble members, we obtain the ensemble perturbation matrix X¢
s using the ensemble transform Kalman filter (ETKF; Bishop et al. 2001; Hunt et al. 2007), as

e  follows:

X% = XPWe, (10)
W = [(N, - )P/, (11)
P4 =[(N, - DI+(Y)TR'Y?]L. (12)

ws Here, X? is the background perturbations, and P“ represents the analysis error covariance matrix
w in the transformed space. Y’ represents the perturbation of the background ensemble in the
77 observation space, and the weights W¢ are then derived based on the analysis covariance. Similarly
s to 4DEnVar, which uses ensemble approximations to project initial and observation perturbations
s onto a subspace spanned by ensemble members, the ETKF efficiently reduces the dimensionality
wo of the analysis problem with ensemble-based transformations.

w  While EnKF is effective for real-time state estimation, EnKS improves estimation accuracy
w further by considering observations over a time window and incorporating their influence ret-
ws rospectively. In this study, we employ a four-dimensional extension of the ETKF, which uses
w temporal correlations within the data to achieve more accurate estimation. For a comprehensive

s explanation, please refer to Miyoshi and Aranami (2006) and Hunt et al. (2007).

186 d PFandPS

w  Variational methods and EnKF estimate the analysis state by assuming Gaussian error statistics
s for the background and observations and minimizing the cost functions defined in (2) and (7). In
w contrast, the PF does not assume Gaussianity or linearity but approximates the entire probability

wo distribution of the state as a set of particles (ensembles or samples). By assigning a likelihood to
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w each particle, PF estimates the analysis state, making it suitable for systems with strong nonlinearity
w2 and non-Gaussianity. The particle distribution plays a similar role to the error covariance matrices
1w (B and P) used in the variational methods and EnKF. Unlike these methods, however, PF does not
e explicitly calculate the error covariance; instead, the particle distribution implicitly represents their
s Statistical properties of the background error covariance. For each particle x(¥, the likelihood is
1w calculated as:

Py ecexp (-3 (v - M) TR (y= HxD)) ). (13)

w  This calculation resembles the state deviation term Jg in (1) for MPC, where posterior states are
ws penalized based on their deviation from the reference. The likelihoods are normalized to produce

w the particle weights A(%):

A0 = p(ylx?)

. (14)
>N p(ylx(m)

20 Using the weighted particles, PF approximates the posterior distribution (filter distribution) as:

Ne
p(xly) ~ ) AMs(x—x"), (15)

m=1

x where 6(x —x¥)) represents a Dirac delta function centered at particle x¥). This representation
22 indicates that the posterior distribution is expressed as a discrete set of weighted particles. To
s better approximate the posterior distribution and mitigate degeneracy, where some particles have
=« negligible weights, a resampling step is performed. During resampling, particles with higher
s weights are replicated, while those with lower weights are discarded, ensuring the ensemble
26 remains focused on the most likely regions of the state space. This resampling process mirrors the
27 adaptive selection of control inputs in MPC, which focuses optimization efforts on trajectories that
2s Mminimize the cost function.

2o The PF is a method for sequentially estimating states, while the PS uses future observation data
20 to provide more accurate state estimates. Applying the weights calculated during the filter update
n  within a data assimilation window, PS uses of the future weights to find the smoother solution at
22 any point throughout the window. This approach is justified by the Markov property, where the

2 System’s future evolution depends solely on its current state (Chopin and Papaspiliopoulos 2020;

10
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2« Nyobe et al. 2023). By taking advantage of this feature, the smoother can produce more accurate
25 estimates over the assimilation window by using future data and previously calculated weights.

26 We note that several studies propose strategies to address degeneracy and maintain particle
2w diversity (e.g., Penny and Miyoshi 2016; Potthast et al. 2019; Kotsuki et al. 2022). These differences
=s include the resampling strategy, techniques to mitigate particle collapse, and localization to manage
2 high-dimensional systems. The current study adopts the PF and PS algorithm based on the recently
20 proposed PF by Poterjoy (2022), as it employs regularization and iterative updates to effectively
21 address degeneracy and maintain particle diversity. For more detailed information on this approach,

2 please refer to Poterjoy (2016, 2022) and Kurosawa and Poterjoy (2023).

22 3. Ensemble Model Predictive Control

2« Section 2 provides an overview of conventional MPC and ensemble data assimilation, highlight-
»s ing their shared goal of determining optimal inputs based on the current state and future predictions.
=s This section introduces a new control technique called EnMPC, which integrates these two meth-
27 0ds. Since EnMPC uses the principles of data assimilation, it incorporates pseudo-observations
=s that contain information about constraints and reference trajectories typically used in MPC. These
»s pseudo-observations are assimilated in a manner similar to actual observations in data assimila-
20 tion, allowing the cost function in EnMPC to adopt a structure similar to that in ensemble data
21 assimilation.

22 Sawada (2024a) focuses on similarities and differences between EnKF and MPC and introduces
xs  EnKF-based EnMPC. Extending this concept, this section focuses on the mathematical formulation
2 0f ENMPC, using ideas from 4DVar to develop a 4DEnVar-based EnMPC approach. We define the
xs formulation of EnMPC in a straightforward manner by modifying the MPC cost function in (1) to
26 make it closer in structure to that of 4DEnVar in (6).

=7 First, data assimilation focuses on state estimation by updating the initial conditions for model
=s integration, while MPC estimates control inputs applied during the control horizon 7,.. The
zs  proposed EnMPC framework treats the control inputs as acting only at the initial time, similar to
20 how data assimilation updates the initial states. While this assumption simplifies the framework,
2 extending EnMPC to optimize control inputs over the entire control horizon 7, remains an important

22 direction for future research. Second, the conventional MPC uses the reference vector r in (1) to

11
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s represent the desired state. In EnMPC, we reformulate the reference vector as a pseudo-observation
2« vector yP. This allows EnMPC to handle reference information in the same way data assimilation

«s incorporates observations. The cost function for EnMPC is therefore expressed as follows:

T,

J(x0) = (xo—X3) TP (x0-X0)+ Y (y) = H" (x))TC" (y/ - H" (x,)).
t=0

(16)

J; input
Jstate

S.t. X1 = MI(X[).

«s Here, P is the analysis error covariance matrix, as the ensemble updated by data assimilation can
.7 be used directly. H? is the operator that maps the state vector to the pseudo-observation space. As

=s described in Section 2b, applying ensemble approximations to the cost function in (16) yields:

T,

P
Jv)= v'v + Uv-d")TCm (Wy-dP),
(v) ZO< /TCT (U)v-d!) -

J; input

Jstate

«s where the innovation vector d” is defined as d” =y, — H? [M;(x()]. The gradient of the cost
20 function in (17) with respect to v is expressed as:
OI\T Tp o
(E) =v+ >y UTCT [Ulv-d!] (18)
t=0

= This expression shows that solving the EnMPC optimization problem does not require the full
= nonlinear model or its tangent linear model, as the ensemble approximations are used to calculate
= the gradient.
= A key feature of EnMPC is its ability to assimilate pseudo-observations in a manner similar to
2ss actual observations in data assimilation. Therefore, the EnMPC approach, which directly solves
= the MPC cost function using ensemble estimations, is not limited to 4DEnVar-based framework,
=7 but can also be applied to EnKS- or PS-based frameworks. Moreover, EnMPC offers flexibility
25 1N setting control objectives through the use of the pseudo-observations and operators. This study
= introduces two approaches for defining control objectives. The first, referred to as the “penalty

=0 term approach,” creates a pseudo-observation vector only when the model prediction exceeds a

12
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2 predefined threshold, as used in Sawada (2024a). The second, called the “trajectory tracking
22 approach,” generates pseudo-observation data directly from the reference trajectory, enabling
s straightforward objective definition. We provide more details in Sec. 4c. Lastly, EnMPC can
2« appropriately handle sampling errors and uncertainties by incorporating techniques from ensemble

25 data assimilation, such as localization and inflation, as detailed in Sawada (2024b).

2 4. Experimental settings

27 In this section, we describe the experimental setup used to evaluate the effectiveness of the
s proposed EnMPC through numerical experiments using the Lorenz63 (Lorenz 1963) model. Our
s experiments follow the CSE procedure (Miyoshi and Sun 2022; Sun et al. 2023; Ouyang et al.
o 2023; Kawasaki and Kotsuki 2024; Sawada 2024a).

on  a. Experimental procedure

22  Figure 1 illustrates the process of the CSE using the proposed EnMPC. The procedure consists

s of the following steps:

274 1. To obtain an accurate estimate of the current state of the system, we first simulate observations

o5 from the nature run (NR; or the true state of the system). We then perform a conventional
276 ensemble data assimilation using these simulated observations, which corresponds to the filter
or7 update (Fig. 1a). This step includes estimating unobserved state variables that are targets
278 for control. The outcome of this process provides the initial conditions necessary for the
o9 subsequent control step.

a0 2. Based on the state estimated in the previous step, we determine the optimal control input using

281 the proposed EnMPC. We consider two approaches for control input determination:

282 (a) Penalty term approach

268 This approach uses a pseudo-observation operator, which acts as a penalty function
204 commonly used in the conventional MPC. Pseudo-observations are generated when the
285 model prediction violates the predefined constraints, effectively penalizing unsuitable
286 behavior (Fig. 1b1).

13
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287 (b) Trajectory tracking approach

268 In the current study, pseudo-observations are directly derived from the reference tra-
289 jectory, making it straightforward to guide the system toward the desired state (Fig.
290 1b2).

2 3. The optimal control input determined in the second step is applied to the NR to perform the

29 control, and the state is integrated forward to the next time step. Similarly, we apply the same
29 control input to the ensemble members and predict their states for the next time step. With the
294 updated system state and ensemble predictions, we restart the CSE cycle from the first step
295 (Fig. 1c).

=s  Here, we emphasize that for state estimation in the first step (Fig. 1a), we employ conventional
27 ensemble data assimilation methods, corresponding to the filter update. In contrast, the second
2 step (Fig. 1b) utilizes the proposed EnMPC, which is based on an ensemble smoother update, to
=s determine the optimal control inputs. For data assimilation in the first step, we consistently use the
s ETKF, regardless of which ensemble smoother update method (4DEnVar, EnKS, or PS) is employed
w0 in EnMPC in the second step. This uniformity ensures that any differences in performance are
w2 solely due to the choice of method in EnMPC in the second step and not influenced by variations
ws in the state estimation in the first step. Lastly, the current study adopts a moving horizon window
«« Of one step. That is, regardless of the length of the prediction horizon used in EnMPC, data

s assimilation and control input estimation are performed at every time step in each cycle.

sz b. Model description

s The current study uses the Lorenz63 (Lorenz 1963) model for testing the proposed control
s« method. Although relatively simple in structure, the model is widely employed as a testbed for
=5 understanding chaotic system behavior. This study aims to demonstrate the effectiveness of EnMPC

s for control and parameter estimation in such chaotic systems.

14
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(a) Data Assimilation (b) Model Predictive Control
Two Approaches to Handle Constraints in MPC
| Estimate the current state of the nature run (NR) (b.1) Penalty term approach

) prediction horizon T,
data assimilation A i control horizon T, ;

A
upper limit 7/f0recast e /A

observations ! model states violating

the constraints

analysis
“

(b.2) Trajectory tracking approach

prediction horizon T, R

A i control horizon T, i

|

Fic. 1. Algorithmic flow of the proposed EnMPC-based CSE for a system with upper and lower limits. (a)
State estimation: estimates the current state of the system using data assimilation (filter update). (b) Control input
optimization: determines the optimal control inputs using the proposed EnMPC framework based on ensemble
forecasts; (b.1) penalty term approach and (b.2) trajectory tracking approach. (c) Application of control inputs:
applies the optimized control inputs to the NR, integrates the system state forward to the next time step, and

returns to the filter update step (a), restarting the CSE cycle.

The Lorenz63 model is a simplified model of atmospheric convection and is represented by the

following set of ordinary differential equations with three state variables:

%mf(y—x),

dy

Y (o) — 19
I x(p—2)-y, (19)
dz

E—xy—ﬁz-

15
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Following Lorenz (1963), we set system parameters o = 10, p =28, and 8 =8/3. The time
step is set to Ar = 0.01 (units defined arbitrarily as 1 hour; see Lorenz (1963)). The Lorenz63
model is characterized by its chaotic trajectory, which oscillates around two unstable fixed points,
(£V72,+V72,27)7 (Kaiser et al. 2018).

Using the Lorenz63 model, the current study investigates two scenarios for control input estima-
tion: estimating only u,. as shown in (20), and estimating all three control variables u,, u,, and

u;, as shown in (21):

d
d—);:(r(y—x)+ux,
dy
2 — ) — 20
o x(p—2z)-y, (20)
dz
E—xy—ﬁz,
and
dr_ (y—x)+
dt_o-y uXa
dy
sz(p—z)—yﬂty, 21
d
d—j=xy—ﬁz+uz.

The control objective in the current study is to keep the value of x in the model positive, ensuring
that the system avoids undesired negative states. Note that the control inputs are applied to the time

derivatives of the state variables, rather than the states themselves.

¢. Pseudo-observations and operators

In the proposed EnMPC framework, we address control problems using two approaches:the
penalty term approach and the trajectory tracking approach. Each approach employs different
methods for generating pseudo-observations y” and operators H”. Throughout our experiments,
we set the psuedo-observation error covariance matrix C”, which acts as the weighting matrix for
the deviations between state variables and control objectives, to C" = 0.011, where I is the identity
matrix. This configuration is based on insights from preliminary experiments and the detailed

investigation in Sawada (2024a,b).
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ss 1) PENALTY TERM APPROACH

s In the penalty term approach, we generate pseudo-observations to ensure that variables remain
s« within specified thresholds. We set the pseudo-observation value to the threshold and assimilate it
s« 1nto the state space via a pseudo-observation operator. Sawada (2024a) employs a similar strategy,
s« designing the control operator to impose penalties when constraints are violated. This approach
«s effectively makes the pseudo-observation operator serve the same role as the penalty function
s« commonly used in conventional MPC.

«s  The control objective of the current study is to keep the x value positive in the Lorenz63 model.
«s When we apply the penalty term approach for the objective (as detailed in Sec. 5a), we use the

«7 following pseudo-observation operator H”:

log(1+exp(—ax))

HP(x) = (22)

a

«s Wwhere a is a positive constant that determines the sharpness of the penalty function. As shown
we in Fig. 2, when a = 100, the function approximates a hinge function that activates the penalty
s only when x becomes less than zero. To keep the value of x non-negative, we set the pseudo-
« observation y¥ = 0. We then use a pseudo-observation operator H” to project the model state x
= 1into the observation space H” (x), effectively imposing a penalty when x violates the constraint. A
= smaller a results in a smoother transition, applying penalties even when x is above the threshold
s« but approaching the threshold, as shown in Fig. 2.

«s  Figure 3 illustrates the impact of changing the parameter a in the pseudo-observation operator
= using the Lorenz63 model. Control input u, is calculated at each time step using (20), and the
»  prediction horizon T), is set to 48 steps (= 48 hour). For this demonstration, we use the 4DEnVar-
= based EnMPC with 10 ensemble members. The parameters for this experiment are summarized in
s Table la.

w  Whena =100, the control inputs are relatively large due to delayed activation of the penalty term,
w1 resulting in spike-like control behavior (Fig. 3a,d). Decreasing the value of a activates the penalty
«2 more gradually, allowing the control to respond earlier, thus preventing x < 0 more smoothly (Figs.
ws 3b—c and e—f). These results show that the choice of a is critical and depends on the specific control

«« Objectives. When the control objective is to maintain the system state close to the threshold, a

17
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ws larger a may be necessary, leading to larger and abrupt control inputs. On the other hand, when
ws staying further from the threshold is acceptable, a smaller a can reduce the overall control inputs,
«7 although the model states may not closely approach the threshold. This highlights the importance
«s Of selecting an appropriate pseudo-observation operator to balance the desired control objectives

ws  With the acceptable magnitude of control inputs.

Hp(x) = log(1l+exp(-ax))/a

<8 ‘
cg:'7 —_—:a = 0.5
P - =g =1
Q6L vennen g = 100
o
n
c57
o »
g4 N\
> A
N
'82’ '\x\
5 %
s 1t R\
=1 N
§0 L ! L “‘ e
-8 -6 -4 -2 0 2 4 6 8

Model space:x

a70 FiG. 2. Comparison of the pseudo-observation operator H” (x) = log(1+exp(—ax))/a used in this study for
ann  different values of the positive constant parameter a. The solid line, dashed line, and dotted line represent the
a2 cases where a = 0.5, a = 1, and a = 100, respectively. The horizontal axis represents values in the model space,

sz while the vertical axis represents the values projected into the pseudo-observation space using the operator.

s 2) TRAJECTORY TRACKING APPROACH

w In the trajectory tracking approach, the current study first defines a reference trajectory that
w1 satisfies the desired constraints. We then control or guide the system to follow this trajectory by
« assimilating pseudo-observations. The pseudo-observations are generated by taking the states of
s the reference trajectory at each observation time.

«  For the experiment using the Lorenz63 model (as detailed in Sec. 5b), we use the trajectory
«s generated by Kawasaki and Kotsuki (2024) as the reference. This trajectory satisfies the constraint
% X >0 and is obtained using conventional MPC by applying control inputs u,, u,, and u, to the

«r Lorenz63 model. We generate the pseudo-observations from the reference every time step for

18
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! 0
400 600 800 1000 1200

. . . i 0
400 600 800 1000 1200

- — 9
200 400 600 800 1000 1200
step

ans FiG. 3. Comparison of results based on different values of a in the pseudo-observation operator shown in Fig.
a5 2. The Lorenz63 model is controlled to keep the x value positive, showing the behavior over the first 1200 steps.
ars  Panels (a), (b), and (c) show the attractors of the controlled NR for a = 100, a = 1, and a = 0.5, respectively.
a7 Panels (d), (e), and (f) show the evolution of x (left axis) in the controlled NR over time, with the blue lines

as  indicating the control inputs |u,| (right axis).

«s all variables, x, y, z. The pseudo-observation operator, H”, is set to the identity operator in this
ws approach, meaning that the pseudo-observations directly correspond to the states of the reference

w0 trajectory without additional transformations.

s« 5. Experimental results

« In this section, we present the experimental results evaluating the performance of the proposed
s  EnMPC using the Lorenz63 model. We compare two approaches, the penalty term approach and
=« the trajectory tracking approach, for the control problem of restricting the state variable x to positive

ws values. Furthermore, we examine how the choice of ensemble data assimilation methods forming
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Estimated Prediction horizon

Approach control inputs T, (hr) Base DA method in EnMPC Figure
43 4DEnVar Fig. 3
enalty term .
(a) p(yp: ;y= 0) u, Flg. 4
6,24, 48,120 Fig. 7a
4DEnVar, EnKS, PS .
() trajectory tracking Uy, 1, 48 Figs. 5,6
(yP: x, y, z from ref. traj.) 6,24, 48, 120 Fig. 7b

TaBLE 1. Experimental setup

s« the basis of EnMPC (4DEnVar, EnKS, and PS) impacts its performance. In addition, we compare
 EnMPC with conventional MPC to assess its computational efficiency and control performance.
«s Note that for the conventional MPC, we set the weighting matrix for the control input C* to 0.011,
w which matches the psuedo-observation error covariance matrix C". We use an ensemble size of

w0 10 for all experiments. All experiments are conducted using MATLAB on a typical laptop.

w1 a. Control using the penalty term approach

« In the penalty term approach, we restrict x to positive values by imposing penalties on regions
«s  where x < 0. Specifically, we utilize a pseudo-observation y” = 0 and a control operator H” (x) =
we log(1+exp(—ax))/a with a =0.5. In this case, we apply control only through u, using (20).

o5 As shown in Fig. 4a, while x fluctuates between positive and negative values in the NR, all
ws four MPC methods generally restrict x to the x > 0 region. This demonstrates that the proposed
«» method successfully solves the MPC problem using ensemble approximations. In addition, the
ws penalty term approach achieves control that takes into account constraint conditions by using the
w0 pseudo-observation operator.

#0  The comparison of control inputs u, shown in Fig. 4e shows that, during the initial 400 steps,
a1 the control input for EnMPC based on PS is larger than those for the other methods (4DEnVar
«2 and EnKS). As described in Sec. 2, this is because EnKS-based and 4DEnVar-based EnMPC use
«s ensemble-based linear transformations, which help retain the statistical structure of the original
«+ ensemble (Lorenc 2003; Poterjoy and Zhang 2015; Houtekamer and Zhang 2016; Kurosawa and
«s Poterjoy 2023). In contrast, PS-based EnMPC determines the analysis state through resampling,
# where particles with higher weights are replicated while those with lower weights are removed.

«7 This can lead to the analysis state being dominated by a few specific particles, potentially causing

20
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«s more abrupt changes in the control input. However, this experiment uses a nonlinear observation
«o operator H? (x) =log(1+exp(—ax))/a as the penalty function, which posed challenges for EnKS-
= based and EnVar-based EnMPC as they inherently assume Gaussianity. In contrast, PS-based
» EnMPC is more appropriate for handling non-Gaussian structures and is less affected by such
= assumptions (Poterjoy 2016; Poterjoy et al. 2019; Kurosawa and Poterjoy 2021).

= Beyond step 400, the success rate of control approaches nearly 100% for all MPC methods,
2+ and during this period, the magnitudes of control inputs for the three EnMPC methods show no
»s significant differences. This suggests that the choice of data assimilation method influences the
2 performance especially during the initial stages.

27 When comparing conventional MPC and EnMPC, it becomes clear that EnMPC achieves sig-
2 nificantly reduced control input magnitudes, which leads to smaller oscillations compared to
2 conventional MPC. This is likely because conventional MPC uses a fixed control weight matrix

@ C"in (1), whereas EnMPC estimates it from the analysis ensemble as P® in (16).

(a) :L63 (w/0 control)
:Conventional MPC

®
@
@ :4DEnVar-MPC
[
@

50 :EnKS-MPC

40

30

20 -

-10 0 10 20

step

431 FiG. 4. Comparison of results using the conventional MPC and EnMPC with the penalty term approach. (a)
w2 The trajectory of the uncontrolled and controlled NR, (b) time series of the values of x, (c) y, and (d) z in the
ws  controlled NR, and (e) the estimated control input u,. The black dots represent the trajectory of the uncontrolled
s NR, and the yellow dots show controlled NR by the conventional MPC. Green, red, and blue represent the
ws  trajectories of the NR controlled by EnMPC based on 4DEnVar, EnKS, and PS, respectively. The dashed line in

ws  (b) indicates the control objective, where x > 0.
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@ b. Control using the trajectory tracking approach

@ The trajectory tracking approach controls the system state towards a predefined reference trajec-
@ tory that satisfies x > 0. We employ the trajectory data from Kawasaki and Kotsuki (2024) as the
« reference and consider all three control variables u,, u,, and u, using (21).

«  The results demonstrate that the proposed EnMPC can accurately follow the reference trajectory.
« In particular, 4DEnVar-based and EnKS-based EnMPC provide smooth and stable control inputs,
«s  while PS-based EnMPC requires larger control inputs (Figs. Se—g ). As mentioned in Sec. Sa,
«+ this is because PS-based EnMPC uses particles to represent the distribution, whereas the other two
«s methods use ensemble-based transformations. In terms of tracking performance, PS-based EnMPC
«s achieves significantly lower root mean squared error (RMSE) of 0.22 compared to 3.04 and 3.03 for
«7  4DEnVar-based and EnKS-based EnMPC, respectively (Fig. 6). This suggests that the PS-based
«s  BEnMPC, known for its flexibility in handling nonlinear regimes, can more accurately represent
1 complex behaviors like the reference trajectory. In contrast, EnKS-based and EnVar-based EnMPC
« struggle to properly incorporate the nonlinearities of the reference trajectory, resulting in larger
s RMSE values.

=  When compared to conventional MPC, all EnMPC methods exhibit significant advantages in
= both tracking performance and control efficiency. Conventional MPC shows an RMSE of 5.91
= (Fig. 6), which is considerably higher than any of the EnMPC methods, demonstrating its difficulty
= 1in accurately following the reference trajectory. As discussed in Sec.5a, this is likely due to the
= fixed control weight matrix C* in conventional MPC, which limits its flexibility in adapting to the
« reference trajectory in the prediction horizon.

458 To enhance the accuracy of the control in both conventional MPC and EnMPC, or to reduce
s the abrupt control inputs in PS-based EnMPC, improving the prediction horizon or increasing
w0 ensemble sizes would be effective. These improvements remain an important subject for future

& research.

ws . Impact of prediction horizon on computational time and control performance

w# This section provides a comparison of the computational time required by conventional MPC and
a0 various EnMPC methods across different prediction horizons (7,,). We perform the comparison

= for both the penalty term approach (Fig. 7a) and the trajectory tracking approach (Fig. 7b).
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as2 Fic. 5. As in Fig. 4, but the optimal control input values are determined to follow a reference trajectory that

4

)

s satisfies the constraints. The black dots represent the reference trajectory.

w2 In the penalty term approach (Fig. 7a), EnMPC methods consistently achieve high success rates

w5 (approximately 1.0) across all prediction horizons. In contrast, conventional MPC fails to control

w+ effectively when the prediction horizon is short (6 and 24 hours). In terms of computational

o5 time, conventional MPC exhibits a sharp increase as T, extends, reflecting its computational

s inefficiency due to the need for full-model evaluations to calculate optimal control inputs. For

o example, at T, = 120 hr, the computational time for conventional MPC is 620 s. On the other hand,

ws the EnMPC methods all show a much lower computational times, with the PS-based approach

ws yielding 121 s, the 4DEnVar-based approach 81 s, and the EnKF-based approach being the most

w0 computationally efficient at 16 s. This is because the 4DEnVar and PS methods used in the current

w  study require iterations to determine the optimal control inputs, whereas EnKS does not. Exploring

« alternative data assimilation methods to further reduce computational time remains an important

w future research topic.
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0.15 . . — 6
O:Conventional MPC
B:4DEnVar-MPC s
0.12 "m: EnKS-MPC
e M PS-MPC
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L
43 %7
x
12
11

lu_| lu | [u_| RMSE

z
44 Fic. 6. Comparison of the average control input magnitudes (|ux|, |uy|, and |u_|; left axis) and RMSE (right
s axis) with respect to the reference trajectory, calculated as averages from step 400 to step 2000. Yellow, green,
w6 red, and blue bars represent conventional MPC, 4DEnVar-based EnMPC, EnKS-based EnMPC, and PS-based

w7 EnMPC, respectively. These values correspond to the results in Fig. 5.

«  Por the trajectory tracking approach (Fig. 7b), the PS-based EnMPC achieves the lowest RMSE,
s maintaining high control accuracy across all prediction horizons. This is because PS does not as-
@ sume Gaussianity and effectively handles the nonlinear regime, making it well-suited for accurately
w7 representing complex reference trajectories. In contrast, conventional MPC exhibits significantly
« higher RMSE values, indicating difficulty in tracking the reference trajectory, regardless of 7),.
# In terms of computational time, PS-based EnMPC requires slightly higher computational costs
w0 compared to other EnMPC methods, but it remains much more efficient than conventional MPC
w (e.g., at T, = 120 hr: conventional MPC = 651 s, 4DEnVar-based = 119 s, EnKF-based = 16 s,
< PS-based = 158 s). This suggests that PS-based EnMPC is a strong candidate for applications
« where high control accuracy is prioritized. Note that the relatively higher computational cost of
s PS-based EnMPC in this study is due to the iterative approach used to prevent particle degeneracy

w5 (Poterjoy et al. 2019; Poterjoy 2022). Alternative PF or PS formulations may reduce computational
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s costs while maintaining performance (Penny and Miyoshi 2016; van Leeuwen et al. 2019; Kotsuki
w7 etal. 2022).

w#s  In summary, these results demonstrate that EnMPC outperforms conventional MPC in both
s computational efficiency and control performance. Particularly for longer prediction horizons,

so EnMPC effectively limits computational cost increases while maintaining high control accuracy.

so 6. Conclusion

so  The current study proposes EnMPC, a nonlinear control framework that combines MPC with
sn ensemble data assimilation. EnMPC reduces computational cost while maintaining accurate control
s Oof nonlinear systems by using ensemble approximation. EnMPC assimilates pseudo-observations
s 1N @ manner similar to actual observations in data assimilation to reflect constraints or reference
su  trajectories of control problems. This unique approach provides an effective and flexible solution
s for addressing the challenges posed by complex and high-dimensional systems, such as those in
ss meteorology and weather control.

sv  We introduce two methods within the EnMPC framework: the penalty term approach and the
s trajectory tracking approach. The penalty term approach imposes penalties when the system
s violates constraints, ensuring the system remains within acceptable behavior. In contrast, the
=0 trajectory tracking approach guides the system to follow a pre-defined trajectory that is designed to
21 satisfy the constraints. Both approaches demonstrate their effectiveness in controlling the chaotic
=2 dynamics of the Lorenz63 model, showing their potential to manage complex system behavior and
s their adaptability to diverse control objectives. The choice between these two approaches depends
=« on the specific control problem. Selecting the appropriate method based on its characteristics and
s Objectives is essential and remains a key area for future research.

= Our experiments highlight the strengths of EnMPC compared to conventional MPC, particularly
=7 in terms of computational efficiency and flexibility. This advantage is primarily due to the fact
=s that conventional MPC relies on the full model for optimization, whereas EnMPC uses ensemble
s approximations. Additionally, EnMPC determines the weights for control inputs using the analysis
s0 error covariance derived from ensemble data assimilation, while conventional MPC uses fixed

s control weights, limiting its adaptability to varying system dynamics.
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501 Fic. 7. Comparison of computational time and performance metrics (success rate and RMSE) as a function of

sz the prediction horizon (7). Panel (a) shows the penalty term approach, depicting computational time (bars, left
s3 axis) and success rate (circles, right axis), where a higher success rate indicates more effective control. Panel (b)
s illustrates the trajectory tracking approach, highlighting computational time (bars, left axis) and RMSE (triangles,
ss right axis), where a lower RMSE indicates more accurate tracking of the reference trajectory. Yellow, green,
ss red, and blue bars represent conventional MPC, 4DEnVar-based EnMPC, EnKS-based EnMPC, and PS-based
s EnMPC, respectively. The values for T,, = 48 hours in panel (a) and (b) correspond to the results presented in

ss Fig. 4 and 5, respectively.
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s« A key aspect of our investigation involves exploring the performance of different ensemble data
s assimilation methods that form the foundation of the EnMPC framework, which highlights the
s importance of selecting the appropriate ensemble smoother method, such as 4DEnVar, EnKS, and
s« PS. For instance, while 4DEnVar-based and EnKS-based EnMPC provide smooth and efficient
s control, the flexibility of PS-based EnMPC in handling nonlinear and non-Gaussian dynamics
s7 leads to greater accuracy, particularly when tracking nonlinear reference trajectories.

ss  Despite its advantages, EnMPC is sensitive to factors such as the pseudo-observations, prediction
s horizon, ensemble size, and the choice of data assimilation method. For instance, achieving
s optimal performance with the penalty term approach requires careful tuning of pseudo-observation
s« operators. The sensitivities highlight the need for further investigation and optimization to enhance
= the effectiveness and applicability of EnMPC.

s« In conclusion, EnMPC represents a promising framework for controlling chaotic and nonlinear
s« Systems, with potential applications extending to operational weather control. Future work will
= focus on addressing the remaining challenges, including improving computational efficiency, op-
= timizing parameter selection, and mitigating sampling errors. By advancing these areas, EnMPC
=7 could become a powerful tool for operational applications, offering new possibilities for weather

s control and beyond.
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